Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34575720

RESUMO

In the filamentous fungus Sordaria macrospora (Sm), the STRIPAK complex is required for vegetative growth, fruiting-body development and hyphal fusion. The SmSTRIPAK core consists of the striatin homolog PRO11, the scaffolding subunit of phosphatase PP2A, SmPP2AA, and its catalytic subunit SmPP2Ac1. Among other STRIPAK proteins, the recently identified coiled-coil protein SCI1 was demonstrated to co-localize around the nucleus. Pulldown experiments with SCI identified the transmembrane nucleoporin (TM Nup) SmPOM33 as a potential nuclear-anchor of SmSTRIPAK. Localization studies revealed that SmPOM33 partially localizes to the nuclear envelope (NE), but mainly to the endoplasmic reticulum (ER). We succeeded to generate a Δpom33 deletion mutant by homologous recombination in a new S. macrospora Δku80 recipient strain, which is defective in non-homologous end joining. Deletion of Smpom33 did neither impair vegetative growth nor sexual development. In pulldown experiments of SmPOM33 followed by LC/MS analysis, ER-membrane proteins involved in ER morphology, protein translocation, glycosylation, sterol biosynthesis and Ca2+-transport were significantly enriched. Data are available via ProteomeXchange with identifier PXD026253. Although no SmSTRIPAK components were identified as putative interaction partners, it cannot be excluded that SmPOM33 is involved in temporarily anchoring the SmSTRIPAK to the NE or other sites in the cell.

2.
Autophagy ; 15(1): 78-97, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081713

RESUMO

Macroautophagy/autophagy is a conserved degradation process in eukaryotic cells involving the sequestration of proteins and organelles within double-membrane vesicles termed autophagosomes. In filamentous fungi, its main purposes are the regulation of starvation adaptation and developmental processes. In contrast to nonselective bulk autophagy, selective autophagy is characterized by cargo receptors, which bind specific cargos such as superfluous organelles, damaged or harmful proteins, or microbes, and target them for autophagic degradation. Herein, using the core autophagy protein ATG8 as bait, GFP-Trap analysis followed by liquid chromatography mass spectrometry (LC/MS) identified a putative homolog of the human autophagy cargo receptor NBR1 (NBR1, autophagy cargo receptor) in the filamentous ascomycete Sordaria macrospora (Sm). Fluorescence microscopy revealed that SmNBR1 colocalizes with SmATG8 at autophagosome-like structures and in the lumen of vacuoles. Delivery of SmNBR1 to the vacuoles requires SmATG8. Both proteins interact in an LC3 interacting region (LIR)-dependent manner. Deletion of Smnbr1 leads to impaired vegetative growth under starvation conditions and reduced sexual spore production under non-starvation conditions. The human NBR1 homolog partially rescues the phenotypic defects of the fungal Smnbr1 deletion mutant. The Smnbr1 mutant can neither use fatty acids as a sole carbon source nor form fruiting bodies under oxidative stress conditions. Fluorescence microscopy revealed that degradation of a peroxisomal reporter protein is impaired in the Smnbr1 deletion mutant. Thus, SmNBR1 is a cargo receptor for pexophagy in filamentous ascomycetes.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Macroautofagia/fisiologia , Sordariales/metabolismo , Vacúolos/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estresse Oxidativo , Domínios Proteicos , Tolerância ao Sal/genética , Sordariales/genética
3.
PLoS One ; 11(6): e0157960, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27309377

RESUMO

In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Autofagia/genética , Carpóforos/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Sordariales/genética , Sequência de Aminoácidos , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Carpóforos/ultraestrutura , Proteínas Fúngicas/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Hifas/ultraestrutura , Fases de Leitura Aberta , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sordariales/crescimento & desenvolvimento , Sordariales/metabolismo , Sordariales/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/metabolismo , Vacúolos/ultraestrutura
4.
PLoS Pathog ; 11(11): e1005205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529322

RESUMO

The transcription factor Flo8/Som1 controls filamentous growth in Saccharomyces cerevisiae and virulence in the plant pathogen Magnaporthe oryzae. Flo8/Som1 includes a characteristic N-terminal LUG/LUH-Flo8-single-stranded DNA binding (LUFS) domain and is activated by the cAMP dependent protein kinase A signaling pathway. Heterologous SomA from Aspergillus fumigatus rescued in yeast flo8 mutant strains several phenotypes including adhesion or flocculation in haploids and pseudohyphal growth in diploids, respectively. A. fumigatus SomA acts similarly to yeast Flo8 on the promoter of FLO11 fused with reporter gene (LacZ) in S. cerevisiae. FLO11 expression in yeast requires an activator complex including Flo8 and Mfg1. Furthermore, SomA physically interacts with PtaB, which is related to yeast Mfg1. Loss of the somA gene in A. fumigatus resulted in a slow growth phenotype and a block in asexual development. Only aerial hyphae without further differentiation could be formed. The deletion phenotype was verified by a conditional expression of somA using the inducible Tet-on system. A adherence assay with the conditional somA expression strain indicated that SomA is required for biofilm formation. A ptaB deletion strain showed a similar phenotype supporting that the SomA/PtaB complex controls A. fumigatus biofilm formation. Transcriptional analysis showed that SomA regulates expression of genes for several transcription factors which control conidiation or adhesion of A. fumigatus. Infection assays with fertilized chicken eggs as well as with mice revealed that SomA is required for pathogenicity. These data corroborate a complex control function of SomA acting as a central factor of the transcriptional network, which connects adhesion, spore formation and virulence in the opportunistic human pathogen A. fumigatus.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Magnaporthe/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Humanos , Hifas/genética , Magnaporthe/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Virulência
5.
Microbiol Res ; 169(2-3): 128-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23953726

RESUMO

Autophagy is a tightly controlled degradation process of all eukaryotes. It includes the sequestration of cytoplasmic contents and organelles within a double-membraned autophagosome. Autophagy involves core autophagy related (atg) genes as well as genes regulating vesicle trafficking. Previously, we analyzed the impact of proteins of the core autophagic machinery SmATG7, SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. While deletion of Smatg8 and Smatg4 abolished fruiting-body formation and impaired vegetative growth, Smatg7 is required for viability. In yeast, the phosphatidylinositol 3-kinase vacuolar protein sorting 34 (Vps34) and its myristoylated membrane targeting unit, the protein kinase Vps15 have been shown to be important regulators of autophagy and vacuolar protein sorting. However, their exact role in filamentous ascomycetes remains elusive. To determine the function of Smvps34 and Smvps15 we isolated genes with high sequence similarity to Saccharomyces cerevisiae VPS34 and VPS15. For both genes we were not able to generate a homokaryotic knockout mutant in S. macrospora, suggesting that Smvps34 and Smvps15 are required for viability. Furthermore, we analyzed the repertoire of vps genes encoded by S. macrospora and could identify putative homologs of nearly all of the 61 VPS genes of S. cerevisiae.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Viabilidade Microbiana , Sordariales/citologia , Sordariales/enzimologia , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Sequência de Aminoácidos , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sordariales/química , Sordariales/genética , Proteína VPS15 de Distribuição Vacuolar/química , Proteína VPS15 de Distribuição Vacuolar/genética
6.
Fungal Genet Biol ; 61: 50-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24095659

RESUMO

Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carpóforos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Sordariales/crescimento & desenvolvimento , Sordariales/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Deleção de Genes , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real
7.
Eukaryot Cell ; 12(8): 1142-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794510

RESUMO

Hac1 is the activator of the cellular response to the accumulation of unfolded proteins in the endoplasmic reticulum. Hac1 function requires the activity of Gcn4, which mainly acts as a regulator of the general amino acid control network providing Saccharomyces cerevisiae cells with amino acids. Here, we demonstrate novel functions of Hac1 and describe a mutual connection between Hac1 and Gcn4. Hac1 is required for induction of Gcn4-responsive promoter elements in haploid as well as diploid cells and therefore participates in the cellular amino acid supply. Furthermore, Hac1 and Gcn4 mutually influence their mRNA expression levels. Hac1 is also involved in FLO11 expression and adhesion upon amino acid starvation. Hac1 and Gcn4 act through the same promoter regions of the FLO11 flocculin. The results indicate an indirect effect of both transcription factors on FLO11 expression. Our data suggest a complex mutual cross talk between the Hac1- and Gcn4-controlled networks.


Assuntos
Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/genética , Aminoácidos/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Adesão Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
J Mol Biol ; 405(4): 909-25, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21111745

RESUMO

The basic zipper Gcn4 protein activates transcription in the yeast Saccharomyces cerevisiae in response to amino acid starvation. This includes numerous metabolic genes of amino acid or purine biosynthesis and the developmental cell-surface flocculin gene FLO11, which is required for diploid pseudohyphae formation and for adhesion upon nutrient starvation. We separated the metabolic from the developmental response by screening for GCN4 alleles that allow growth during amino acid starvation but are impaired in adhesion and are unable to form pseudohyphae. The identified Gcn4(L267S) variant carries an amino acid substitution in the third of the four conserved leucines of the zipper dimerization domain. This mutation abolished FLO11 expression and results in reduced but sufficient transcriptional activity for amino acid biosynthetic genes. The Leu267Ser substitution impairs Gcn4 homodimer formation and is a significantly more stable protein than the wild-type protein. A helix-breaker substitution in Leu253 results in a transcriptionally inactive but highly stable protein variant. This is due to a feedback circuit between transcriptional activity of Gcn4 and its own stability, which depends on the Gcn4-controlled cyclin PCL5. Gcn4(L253G) reduces the expression of Pcl5 and therefore reduces its own degradation. This self-controlled buffer system to restrict transcriptional activity results in a reciprocal correlation between Gcn4 transcriptional activity and protein stability.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Ciclinas/genética , Dimerização , Diploide , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Óperon Lac , Zíper de Leucina/genética , Glicoproteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Ativação Transcricional
9.
Eukaryot Cell ; 8(4): 496-510, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19218424

RESUMO

Pcl5 is a Saccharomyces cerevisiae cyclin that directs the phosphorylation of the general amino acid control transcriptional activator Gcn4 by the cyclin-dependent kinase (CDK) Pho85. Phosphorylation of Gcn4 by Pho85/Pcl5 initiates its degradation via the ubiquitin/proteasome system and is regulated by the availability of amino acids. In this study, we show that Pcl5 is a nuclear protein and that artificial dislocation of Pcl5 into the cytoplasm prevents the degradation of Gcn4. Nuclear localization of Pcl5 depends on the beta-importin Kap95 and does not require Pho85, Gcn4, or the CDK inhibitor Pho81. Pcl5 nuclear import is independent on the availability of amino acids and is mediated by sequences in its C-terminal domain. The nuclear localization signal is distinct from other functional domains of Pcl5. This is corroborated by a C-terminally truncated Pcl5 variant, which carries the N-terminal nuclear domain of Pho80. This hybrid is still able to fulfill Pcl5 function, whereas Pho80, which is another Pho85 interacting cyclin, does not mediate Gcn4 degradation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ciclinas/metabolismo , Sinais de Localização Nuclear , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ciclinas/química , Ciclinas/genética , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Biol Cell ; 17(7): 2952-62, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16611745

RESUMO

Protein stability of the c-jun-like yeast bZIP transcriptional activator Gcn4p is exclusively controlled in the yeast nucleus. Phosphorylation by the nuclear Pho85p cyclin-dependent protein kinase, a functional homolog of mammalian Cdk5, initiates the Gcn4p degradation pathway in complex with the cyclin Pcl5p. We show that the initial step in Gcn4p stabilization is the dissociation of the Pho85p/Pcl5p complex. Pcl7p, another nuclear and constantly present cyclin, is required for Gcn4p stabilization and is able to associate to Pho85p independently of the activity of the Gcn4p degradation pathway. In addition, the nuclear cyclin-dependent Pho85p kinase inhibitor Pho81p is required for Gcn4p stabilization. Pho81p only interacts with Pcl5p when Gcn4p is rapidly degraded but constitutively interacts with Pcl7p. Our data suggest that Pcl7p and Pho81p are antagonists of the Pho85p/Pcl5p complex formation in a yet unknown way, which are specifically required for Gcn4p stabilization. We suggest that dissociation of the Pho85p/Pcl5p complex as initial step in Gcn4p stabilization is a prerequisite for a shift of equilibrium to an increased amount of the Pho85p/Pcl7p complexes and subsequently results in decreased Gcn4p phosphorylation and therefore increased stability of the transcription factor.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Núcleo Celular , Ciclinas/análise , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...